DTI Image Registration under Probabilistic Fiber Bundles Tractography Learning
نویسندگان
چکیده
Diffusion Tensor Imaging (DTI) image registration is an essential step for diffusion tensor image analysis. Most of the fiber bundle based registration algorithms use deterministic fiber tracking technique to get the white matter fiber bundles, which will be affected by the noise and volume. In order to overcome the above problem, we proposed a Diffusion Tensor Imaging image registration method under probabilistic fiber bundles tractography learning. Probabilistic tractography technique can more reasonably trace to the structure of the nerve fibers. The residual error estimation step in active sample selection learning is improved by modifying the residual error model using finite sample set. The calculated deformation field is then registered on the DTI images. The results of our proposed registration method are compared with 6 state-of-the-art DTI image registration methods under visualization and 3 quantitative evaluation standards. The experimental results show that our proposed method has a good comprehensive performance.
منابع مشابه
Evaluations of diffusion tensor image registration based on fiber tractography
BACKGROUND Diffusion Tensor Magnetic Resonance Imaging (DT-MRI, also known as DTI) measures the diffusion properties of water molecules in tissues and to date is one of the main techniques that can effectively study the microstructures of the brain in vivo. Presently, evaluation of DTI registration techniques is still in an initial stage of development. METHODS AND RESULTS In this paper, six ...
متن کاملQuantitative Analysis of White Matter Fiber Properties along Geodesic Paths
Diffusion Tensor Imaging (DTI) is becoming a routine magnetic resonance technique to study white matter properties and alterations of fiber integrity due to pathology. The advanced MRI technique needs postprocessing by adequate image processing and visualization tools. Previous analysis of DTI in clinical studies use manual definition of regions or interest or image matching followed by voxel-b...
متن کاملNeuroQLab DTI - Probabilistic Parameter Adaption for Efficient Fiber Tracking
NeuroQLab DTI is a software tool which we developed for efficient and robust fiber tractography and fiber quantification. It consists of deterministic and probabilistic fiber tracking algorithms and offers multiple options for seeding and filtering fiber tracts. This paper shows the fiber tracking results for three different patient data sets, published within the context of the 2015 DTI tracto...
متن کاملMethods to Improve Fiber Reconstruction at DTI-Based Tractography in the Area of Brain Tumor: Case Illustration and Literature Review
Background and Aim: DTI-based tractography could help us to visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The aim of the current study is to discuss several solutions to improve the procedure of fiber reconstruction adjacent or inside brain lesions. Illustrative cases...
متن کاملMeasures for validation of DTI tractography
The evaluation of analysis methods for diffusion tensor imaging (DTI) remains challenging due to the lack of gold standards and validation frameworks. Significant work remains in developing metrics for comparing fiber bundles generated from streamline tractography. We propose a set of volumetric and tract oriented measures for evaluating tract differences. The different methods developed for th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016